Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures.
نویسندگان
چکیده
In the environment, multiple microbial taxa typically coexist as communities, competing for resources and, often, physically associated within biofilms. A dual-species cocultivation model has been developed by using two ubiquitous and well studied microbes Pseudomonas aeruginosa (P.a.) and Agrobacterium tumefaciens (A.t.) as a tractable system to identify molecular mechanisms that underlie multispecies microbial associations. Several factors were found to influence coculture interactions. P.a. had a distinct growth-rate advantage in cocultures, increasing its relative abundance during planktonic and biofilm growth. P.a. also demonstrated a slight quorum-sensing-dependent increase in growth yield in liquid cocultures. P.a. dominated coculture biofilms, "blanketing" or burying immature A.t. microcolonies. P.a. flagellar and type IV pili mutant strains exhibited deficient blanketing and impaired competition in coculture biofilms, whereas, in planktonic coculture, these mutations had no effect on competition. In contrast, A.t. used motility to emigrate from coculture biofilms. In both planktonic and biofilm cocultures, A.t. remained viable for extended periods of time, coexisting with its more numerous competitor. These findings reveal that quorum-sensing-regulated functions and surface motility are important microbial competition factors for P.a. and that the outcome of competition and the relative contribution of different factors to competition are strongly influenced by the environment in which they occur.
منابع مشابه
Effect of Atorvastatin and Rosuvastatin on Quorum Sensing, Biofilm Formation and Bacterial Motilities of Pseudomonas Aeruginosa
Statins have been widely studied as antibacterial compounds, but the mechanism of their bacterial inhibition is still not known. In the present investigation two statins, atorvastatin and rosuvastatin, were tested for their antimicrobial activity against Pseudomonas aeruginosa and both showed MIC of 625μg/ml. Both the statins shared structural similarity with quorum sensing signal molecule of G...
متن کاملIsolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa
Quorum sensing (QS) has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identi...
متن کاملEllagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence
BACKGROUND Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P...
متن کاملOptimization of Growth Conditions and Purification of Quorum Sensing Signal Molecules Produced by Pseudomonas Aeruginosa
Expression of virulence factors and biofilm formation in P.aeruginosa is associated with production of quorum sensing signal molecules (QSSMs) belonging to the class of acyl homoserine lactones (AHLs). Besides regulating virulence factors, these molecules also interact with eukaryotic cells and can modulate immune response. In most of the studies, synthetic QSSMs have been employed as therapeut...
متن کاملQuorum sensing in plant-pathogenic bacteria.
Quorum sensing (QS) allows bacteria to assess their local population density and/or physical confinement via the secretion and detection of small, diffusible signal molecules. This review describes how phytopathogenic bacteria have incorporated QS mechanisms into complex regulatory cascades that control genes for pathogenicity and colonization of host surfaces. Traits regulated by QS include th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 10 شماره
صفحات -
تاریخ انتشار 2006